Energy Requirements for a Digital Society

Walter Baer Scott Hassell

Ben Vollaard

FY 2001 Energy Storage System Program Peer Review November 15, 2001

Project Objective and Approach

Objective: Assess needs and roles for OPT technologies as U.S. evolves toward a digital economy and society Approach:

- Identify key ICT drivers and likely impacts
 - ⇒ ICT= Information & Communication Technology
- Develop 20-year scenarios with alternative paths of ICT development and use
- Evaluate scenario implications for electricity requirements and characteristics
- Assess implications for OPT technologies and programs

Why Focus on Hard-to-Predict Long Term Developments?

- This is not a 20-year forecasting exercise
- Scenarios depict ICT drivers of electricity use and the uncertainties surrounding them
- Scenarios can reveal mismatches between ICT-driven needs and energy technology availability
- Scenarios can inform R&D decisions and suggest hedging and shaping strategies

Scenarios Focused on Two ICT Drivers

We selected these dimensions:

- 1. Level of ICT use and trust
 - Use more important than technology
 - Use correlated with trust and confidence
- 2. Centralized or distributed control
 - Important both for ICT and electricity systems
 - Choices lead to different evolutionary paths

Four ICT Scenarios Through 2021

ICT Affects Electricity Use in Three Ways

- 1. Electricity used by ICT devices
- 2. ICT contributions to energy efficiency and energy management
- 3. ICT-related societal changes
 - e.g., telework, e-commerce, videoconferencing
 - Energy tradeoffs: telework vs. home office
 - These are the most important changes in the long run and the most difficult to assess analytically

ICT-Related Electricity <u>Savings</u> Vary Among 2021 Scenarios

Electricity Supply Issues Raised By ICT Scenarios

- Assuring power quality for very large numbers of digital devices
- Using ICT to improve grid reliability and operations
- Using ICT to support distributed generation and storage
- Addressing vulnerabilities of ICT and electricity infrastructures

Assuring Power Quality for Ubiquitous Digital Devices

Findings/Observations from Scenarios

- Storage/conditioning feasible at several levels:
 chip, device, plug, building, "power park"
- Industry restructuring blurs responsibility for quality
- Mfgrs may under-invest in conditioning to keep costs down
- Industry R&D may not meet growing needs for quality

Implications for OPT

- Include power quality in program goals and plans?
- Increased R&D funding for "quality"-related applications: storage, power electronics, harmonic filters, etc.
- Analysis, particularly of system-wide power quality issues
- Inform stakeholders about quality issues, technologies

Using ICT to Improve Grid Reliability and Operations

- Findings/Observations from Scenarios
 - Even decentralized scenarios need a robust grid
 - ICT developments essential for T&D monitoring and control
 - Unclear whether industry R&D and structure will provide grid capacity and reliability needed in *Reference* and *Zaibatsu* cases
- Implications for OPT
 - Need for analysis of system-wide T&D issues such as
 - will industry fund needed improvements in T&D reliability?
 - will ICTs for adv T&D techs come on line quickly enough?
 - are greater T&D margins needed to support competition?
 - Analysis may suggest increased OPT R&D funding for T&D

Using ICT to Support Distributed Generation and Storage

Findings/Observations from Scenarios

- Storage increasingly will be integrated with DG
- Technical standards for large DR deployment/interconnection are essential
- Many factors limiting DR growth are non-technical
- ICT will support DR integration and control under all scenarios

Implications for OPT

- Increased R&D funding for DG and storage
- Support DR interconnection standards development and demonstration/verification
- Analysis of regulations/policies for DR dispatch and pricing
- Inform stakeholders about DR technologies, issues

11

Addressing Vulnerabilities of Power and ICT Infrastructures

Findings/Observations from Scenarios

- While ICT supports both centralized and decentralized scenarios, decentralization adds flexibility and resilience
- "Self-healing" systems are an important goal whose feasibility, cost and timing remain unclear
- Unclear whether Internet will be secure enough for essential communication and control links

Implications for OPT

- View DR as strategy to increase infrastructure robustness
- Increased R&D on ICTs for grid and DR: monitoring, decision-making, control for dynamic supply and demand response
- Analysis of infrastructure efficiency/robustness tradeoffs

Principal Findings on ICT-Driven Electricity Use by 2021

- Residential electricity use larger than EIA's estimate; primarily due to more home offices, home networks and digital TV
 - home networks generally increase kwh used, but reduce peak loads and save other fuels
- Commercial and industrial use below EIA estimates, primarily due to EMS, telework and e-commerce
 - telework and e-commerce cut kwh in commercial and industrial sectors while raising use at home
- Total electricity use 2-3% lower than EIA estimate
 - ICT-driven savings differ widely among scenarios

2021 Reference Scenario

2001-2006 trends extended and/or modified:

- Moore's Law slows after 2015 for computing and storage, but not for optical bandwidth
- Smart embedded devices, voice control, complex software agents, biometric ID, MEMS in general use
- Relatively high use of and confidence in the Net
- Balance between centralized and distributed control, although more distributed than in 2006
- ICT problems and issues persist, but U.S. society has achieved generally workable solutions

"Zaibatsu" 2021

Higher ICT use, more centralized control

- Large multinational corporations (MNCs) own ICT infrastructure and dominate e-commerce
- Emphasis on wired over wireless infrastructure
- Most population, GDP growth in cities and suburbs
- Investment in intelligent transportation systems eases commuting, results in less telework
- Tight security, harsh laws against cybercrime
- Very little privacy, but accepted by 90% of public
- More emphasis on grid, somewhat less on DR

"Cybertopia" 2021

Higher ICT use, distributed control

- ICT infrastructure and Net services operated by mix of large and small enterprises
- Emphasis on wireless over wired infrastructure
- More growth in small towns and rural areas
- More telework, distance learning, telemedicine
- More substitution of e-commerce for store visits
- Very large deployments of tiny wireless sensors
- Technology keeps Net secure, lowers cybercrime
- More emphasis on DR, somewhat less on grid

"Net Insecurity" 2021

Loss of public trust in Net leads to lower usage

- Public Net peaks around 2012 and then declines due to persistent, unresolved security problems
 - massive identity theft and loss of user data
 - penetration of home LANs, standard firewalls
 - destruction, spoofing of information on public Net
 - viruses, malicious code hard to counter
- Less telework, B2C e-commerce, medical monitoring
- Consumers invest heavily in standalone ICTs, oneway media, home LAN islands unconnected to Net

Comparing the 2021 Scenarios

	Reference		Cyber-	Net
<u>Item</u>	<u>Scenario</u>	<u>Zaibatsu</u>	<u>topia</u>	<u>Insecur.</u>
Digital TV hh (%)	95	98	98	99
Adult Net users (%)	92	98	95	80
Households on Net (%)	92	98	95	55
Full/part-time teleworkers (mil)	40	30	60	20
IP-addressable devices (billion)	>3	>3	>10	<1
Big firms using e-commerce (%)	98	99	98	90
Consumers using e-commerce(%) 88	95	93	30
HH with home networks (%)	90	95	95	90
Medical monitoring on Net	yes	more	more	little